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Based on a hydrodynamic length, which is typically larger than the nominal flame
thickness, a premixed flame can be viewed as a surface of density discontinuity,
advected and distorted by the flow. The velocities and the pressure suffer abrupt
changes across the flame front that consist of Rankine–Hugoniot jump conditions,
to leading order, with corrections of the order of the flame thickness that account
for transverse fluxes and accumulation. To complete the formulation, expressions
for the flame temperature and propagation speed, which vary along the flame as
a result of local non-uniformities in the flow field and of flame front curvature,
are derived. Unlike previous studies that assumed a mixture consisting of a single
deficient reactant, the present study uses a two-reactant scheme and thus considers
mixtures whose compositions vary from lean to rich conditions. Furthermore, non-
unity and general reaction orders are considered in an attempt to mimic a wider range
of reaction mechanisms and, to better represent actual experimental conditions, all
transport coefficients are allowed to depend arbitrarily on temperature. The present
model, expressed in a coordinate-free form, is valid for flames of arbitrary shape
propagating in general fluid flows, either laminar or turbulent.

1. Introduction
One of the complexities in the analysis of combustion problems is the large number

of elementary chemical reactions involved in a particular process. It is therefore
commonplace in theoretical studies to adopt an overall one-step kinetic model. For
premixed flames it is often sufficient to consider a scheme that depends on a single
reactant, the deficient one in the mixture. The reaction rate then depends on the
concentration of that reactant and, for simplicity, the reaction order is taken to be
one. The mixture’s properties are characterized by a single Lewis number, defined
as the ratio of the thermal diffusivity of the mixture (determined primarily by the
abundant inert species) to the mass diffusivity of the deficient reactant (based on
the reactant–inert binary diffusion coefficient). The results apply, therefore, to off-
stoichiometric mixtures being either rich or lean and the effective Lewis number is
in general significantly different from one:† it is larger than one for lean mixtures

† The Lewis number can be significantly changed by diluting the mixture with an inert that
affects primarily the average thermal diffusivity.
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of heavy fuels such as hydrocarbons–air (except possibly for methane–air), or rich
mixtures of light fuels such as hydrogen–air; it is smaller than one for rich mixtures
of heavy fuels or lean mixtures of light fuels. When the fuel and oxidizer in the
mixture are nearly at stoichiometric proportions, the mixture properties are better
characterized by two Lewis numbers and a scheme that follows both the fuel and
the oxidizer must be considered. Furthermore, to better approximate the effects of the
many elementary reactions that actually occur in real systems, the rate of the global
reaction must depend on the concentrations of both reactants raised to arbitrary and
different powers. The objective of the present study is to use a two-reactant scheme,
with arbitrary reaction orders, in order to provide a general hydrodynamic theory of
flame propagation in mixtures whose compositions vary from lean to rich.

The propagation of a premixed flame of multidimensional structure in an arbitrary
flow field can be described by examining the problem on two separate scales, as
carried out by Matalon & Matkowsky (1982) for a single-reactant model. These are
the hydrodynamic scale L that characterizes the size of the flame (e.g. the wavelength
of wrinkles on the flame front or the geometrical dimensions of the vessel within which
the flame propagates), and the diffusion length scale LD = Dth/SL that characterizes
the thermal thickness of the flame; here Dth is the thermal diffusivity of the mixture
and SL is the laminar flame speed. Typically LD ∼ 10−2 cm and L is at least of the
order of a few centimetres implying that the ratio δ ≡ LD/L is much smaller than one.
Viewed on the hydrodynamic length scale, the flame may be regarded as a surface
of density discontinuity, advected and distorted by the flow. The flow field (whether
laminar or turbulent) is determined by a global analysis where the hydrodynamic
equations must be solved subject to jump relations across the flame and appropriate
conditions along the boundary of the domain. The flame is characterized by its
temperature Tf and propagation speed Sf , which vary along the front as a result of
local non-uniformities in flow field and curvature and, in the present study, as a result
of deviation from stoichiometry as well. These, and the jump relations in pressure and
velocities across the front, remain to be determined from an analysis of the internal
structure of the flame.

Unlike the derivation in Matalon & Matkowsky (1982), we use in the present work
intrinsic curvilinear coordinates attached to the flame front which not only provide
transparent solutions that are more readily interpreted physically, but also cast the
results in coordinate-free form that can be easily applied to any geometry of interest.
Furthermore, we shall use a two-reactant scheme with arbitrary reaction orders which,
in view of the work of Westbrook & Dryer (1981), can represent a wide range of
reaction mechanisms; the reaction orders need not necessarily be integers and can
often take negative values. Finally, to better represent actual experimental conditions
for which the diffusion coefficients tend to increase with temperature through the flame
zone, we have allowed all transport coefficients to depend arbitrarily on temperature
while retaining the Prandtl and Lewis numbers fixed.

In addition to determining the velocity and pressure fields, we also examine the
production of vorticity in the flame zone. Although it is a straightforward matter
to deduce the vorticity field and, in particular, the vorticity jump across the flame
front once the velocity field is known, we have constructed explicit solutions for the
vorticity inside the flame zone that clearly illustrate the roles of viscous diffusion and
baroclinic effects and more readily identify the mechanism of vorticity generation.
The results have been examined for simple flow configurations.

Among the earlier studies that have used a two-reactant model are the works
of Sen & Ludford (1979) and Mitani (1980) who examined the dependence of the
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laminar flame speed on stoichiometry, and of Joulin & Mitani (1981) and Jackson
(1987) who studied the stability of a planar flame in the context of a constant density
model. Effects of variable transport, which are easily accounted for when studying the
structure of a planar flame, have been incorporated in more general circumstances
by Clavin & Garcia (1983) when examining the stability of a premixed flame and by
Keller & Peters (1994) when examining transient pressure effects on the evolution of
premixed flames. Both effects were included in the slowly varying-flame analysis of
stretched flames by Bechtold & Matalon (1999).

The present theory has numerous applications that complement those previously
recognized following the earlier study of Matalon & Matkowsky (1982). First, it
provides a general formulation for numerically simulating the propagation of a thin
flame, treated as a free boundary, in a general flow field. In particular, it provides
explicit expressions for the flame speed and temperature and their dependence on
flame stretch, results that have been verified and exploited experimentally by many
investigators: cf. Wu & Law (1984), Echekki & Mungal (1990), Kwon, Tseng &
Faeth (1992). Second, it is an appropriate framework in which to study the stability
characteristics of premixed flames and the onset of cellular or other corrugated
structures: cf. Pelce & Clavin (1982), Matalon & Matkowsky (1984), Clavin & Garcia
(1983), Bechtold & Matalon (1987), Kim & Matalon (1990). These stability predictions
have provided convenient means for comparing theory with experiment as carried out,
for example, by Quinard, Searby & Boyer (1984) for planar flames using the results of
Pelce & Clavin (1982) and Matalon & Matkowsky (1984), and by Bradley & Harper
(1994) and Bradley (1999) for spherical flames using the results of Bechtold &
Matalon (1987). Furthermore, the results are applicable to turbulent flames in the
flamelet regime, where the entire flame is embedded within eddies of the size of
the Kolmogorov scale and the flow within the thin flame is quasi-laminar. This
important regime of turbulent combustion, which includes many applications, such
as the spark ignition engine, and most laboratory experiments has been rigorously
studied by Peters (2000). In all these applications the present study will provide greater
quantitative accuracy, by allowing temperature-dependent transport properties, over
a wider range of experimental conditions spanning from lean to rich mixtures.

2. Formulation
We consider a premixed flame propagating through a combustible mixture

consisting of deficient, MD , and excess, ME , reactants, both appearing in relatively
small quantities relative to an abundant inert. The reactants mass fractions are Yiu ,
for i = E, D, where the subscript u denotes conditions in the fresh unburned state.
The chemical reaction proceeds according to

νDMD + νEME → Products,

where νi is the stoichiometric coefficient of species i. The reaction rate obeys an
Arrhenius law with an overall activation energy E and a pre-exponential factor
B. The reaction orders are taken to be a and b with respect to the deficient/excess
reactant, respectively. The ratio of the mass of excess-to-deficient reactants in the fresh
mixture is Φ = YEu

/νYDu
where ν = νEWE/νDWD is the mass-weighted stoichiometric

coefficient ratio, with Wi the molecular weight of species i . We note that Φ is always
greater than unity; it is equal to the equivalence ratio for fuel-rich mixtures, and its
reciprocal for fuel-lean mixtures.
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The density and pressure of the mixture are scaled with respect to their values in the
fresh mixture, ρ̃u and p̃u (here and in the following symbols with the tilda correspond
to a dimensional quantity). The viscosity µ̃ and thermal conductivity λ̃ of the mixture,
and the mass diffusivities D̃i of the two reactants, depend on the temperature T̃ and
are scaled with respect to their values at the temperature T̃u of the fresh mixture.
Although the dependence on temperature is arbitrary, the ratios consisting of the
Lewis Lei = λ̃/cpρ̃D̃i , and Prandtl Pr = µ̃cp/λ̃ numbers, are assumed constant, so
that

λ̃

λ̃u

=
ρ̃D̃i

ρ̃uD̃iu

=
µ̃

µ̃u

≡ λ.

While this assumption is adopted primarily because of mathematical convenience,
we note that for gases µ̃, ρ̃D̃i, λ̃ ∼ T α with 1/2 � α � 1 (Williams 1985) so that
the Lewis and Prandtl numbers are nearly constant. Let θ denote the difference of
the local temperature from its value in the fresh mixture, scaled with respect to
QYDu

/(cpνDWD) where Q is the heat of combustion and cp the specific heat (at

constant pressure) assumed constant. Then θ = (T̃ − T̃u)/(T̃a − T̃u) where T̃a is the
adiabatic flame temperature. Lengths and time are scaled on L and L/SL, respectively,
where SL is the adiabatic flame speed.

The governing equations are the zero-Mach-number Navier–Stokes equations for
a variable-density gas mixture, supplemented by the energy equation, mass balance
equations for the two reactants and a suitable equation of state. In dimensionless
form these are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ
Dv

Dt
= −∇p + δPr ∇ · λΣ, (2.2)

ρ
Dθ

Dt
− δ∇ · (λ∇θ) = δ−1�, (2.3)

ρ
DYD

Dt
− δLe−1

D ∇ · (λ∇YD) = −δ−1YDu
�, (2.4)

ρ
DYE

Dt
− δLe−1

E ∇ · (λ∇YE) = −δ−1νYDu
�, (2.5)

ρ {1 + (σ − 1)θ} = 1, (2.6)

where D/Dt ≡ ∂/∂t+ v · ∇ is the convective derivative with t the time variable, v is
the velocity vector, and Σ = 2E − 2

3
(∇ · v)I is the viscous stress tensor. Here I is the

unit tensor and E = 1
2

{
∇v + (∇v)T

}
is the rate of strain tensor with the superscript

T denoting the transpose (the mixture has been assumed to be a Newtonian gas and
the bulk viscosity was set to zero). The reaction rate � is given by

� = D ρa+bY a
DY b

E exp

{
βσ (θ − 1)

1 + (σ − 1)θ

}
,

where σ ≡ ρ̃u/ρ̃b is the thermal expansion coefficient (the subscript b denotes the
state of the burned gas), β = E(T̃a − T̃u)/R

oT̃ 2
a is the Zeldovich number and D is the

Damköhler number. If the large-activation-energy (β � 1) expression for the laminar
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flame speed

SL =

{
2 (λ̃b/cp) G(a, b; ϕ/LeE)

ρ̃2
u βa+b+1

νb
E Y a+b−1

Du
ρ̃ a+b

b

νb−1
D Wa+b−1

D

Lea
D Leb

E B
}1/2

exp(−E/2RoT̃a)

is used in the scaling, the Damköhler number D takes the form

D =
σ a+bβa+b+1

2 Lea
D Leb

E G(a, b; ϕ/LeE)

λ̃u

λ̃b

Φb

Y a
Du

Y b
Eu

.

The coefficient G, which depends on the reaction orders a and b, the excess reactant
Lewis number LeE , and the parameter ϕ ≡ β(Φ − 1) that measures the departure
from stoichiometry, is defined as

G(a, b; z) ≡
∫ ∞

0

ςa(ς + z)be−ς dς.

It is always positive and, at stoichiometry, reduces to G(a, b; 0) = 
(a + b + 1) where

 is the gamma function. When a = b = 1, G(1, 1; z) = 2 + z and the expression for
SL reduces to those listed in Bechtold & Matalon (1999) for conditions remote from,
near and at stoichiometry. Finally, in the homogeneous fresh mixture far upstream we
have ρ = 1, θ = 0, p = 0 and Yi = Yiu ; other boundary conditions will be discussed
in due course.

3. The reaction sheet
A self-consistent asymptotic analysis for large Zeldovich numbers, β � 1, requires

using a near-equidiffusional formulation whereby Le−1
i = 1−β−1 lei (cf. Buckmaster &

Ludford 1982), and a near-stoichiometric mixture, for which YEu
− νYDu

= O(β−1). It
is then convenient to introduce the enthalpy functions, hD and hE , defined from the
relations

θ + YD/YDu
= 1 + β−1hD,

θ + YE/νYDu
= 1 + β−1hE,

and consider the variables hi in lieu of Yi . The enthalpies satisfy the reaction-free
equations

ρ
Dhi

Dt
− δ∇ · (λ∇hi) = δlei ∇ · (λ∇θ). (3.1)

In the limit β → ∞, the chemical reaction is confined to a sheet, F (x, t) = 0, where
θ � 1 so that the flame temperature may be expressed in the form θf = 1 + β−1θ̂∗

f .
Let n = ∇F/|∇F | be a unit normal to the reaction sheet pointing towards the burned
gas, and Vf = −Ft/|∇F | the propagation velocity back along the normal. A standard
analysis of the O(β−1) reactive–diffusive layer then yields the following jump relations
across the sheet:

[θ] = [hi] = 0,

[
λ
∂hi

∂n

]
= −lei

[
λ
∂θ

∂n

]
, (3.2)

δ

[
λ
∂θ

∂n

]
= −

{
G(a, b; | h∗

E − h∗
D|)

G(a, b; ϕ)

}1/2

exp(θ̂∗
f /2), (3.3)
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[v] = 0, [p] = 4
3
Pr

[
λ

∂

∂n
(v · n)

]
, (3.4)

[
∂

∂n
ρ(v · n − Vf )

]
= 0,

[
∂

∂n
(v × n)

]
= 0, (3.5)

where ∂/∂n ≡ n · ∇ is the normal derivative, [ · ] denotes the jump in the quantity,
namely the value on the burned side minus that on the unburned side of the sheet, and
the superscript ∗ denotes the value on the burned side of the sheet. These jumps allow
for either species to be consumed at the sheet, with the quantity |h∗

E −h∗
D| representing

the mass fraction of the unconsumed reactant. When the deficient reactant in the
fresh mixture MD is the one depleted at the sheet, Y ∗

D = 0, the flame-temperature
perturbation is given by θ̂∗

f = h∗
D , and h∗

E − h∗
D determines the mass fraction of ME . In

particular, we note that when the fresh mixture is sufficiently far from stoichiometry
the deficient reactant MD is always the one depleted since ME is in abundance.
Indeed, in the limit when both h∗

E − h∗
D and ϕ are large and O(β), the asymptotic

relation G(a, b; z) ∼ βbΓ (a +1) for z ∼ β implies that the factor in the square root of
(3.3) tends to a constant that is typically absorbed in the Damköhler number, and the
single-reactant results are recovered (cf. Matalon & Matkowsky 1982). For conditions
sufficiently close to stoichiometry, however, the local concentration of the reactants in
the reaction zone, which depends on their mobility in reaching this zone, determines
which of the two reactants is depleted (see Bechtold & Matalon 1999). When the
slightly excess reactant in the fresh mixture is the heavier of the two reactants, it can
be locally deficient in the reaction zone, and thus depleted by the chemical reaction.
In this case, Y ∗

E = 0, the flame-temperature perturbation is θ̂∗
f = h∗

E and h∗
D − h∗

E

determines the mass fraction of MD .
In the limit β → ∞ the problem, therefore, simplifies to solving (2.1)–(2.6) with

� = 0 on either side of the reaction sheet, subject to the jump relations (3.2)–(3.5)
across the sheet. We note that the results so far are applicable even when distances are
scaled on the diffusion length LD , in which case δ = 1, with no separation between
the hydrodynamic and diffusion length scales.

4. Intrinsic coordinates attached to the flame
In analysing the internal structure of the flame, it is convenient to introduce a

curvilinear coordinate system (ξ1, ξ2, n) attached to the reaction sheet F (x, t) = 0.
Here ξ1, ξ2 are the intrinsic surface coordinates aligned, at every instant in time, with
the principal directions of curvature at each point of the surface, and n is the distance
to the sheet along the normal (see figure 1). Curvilinear coordinates have been used
before, for example for boundary layer flow over a general body (see Rosenhead
1963), but the complete three-dimensional equations for a coordinate system attached
to a moving surface have not been explicitly written down before. We present the
relevant details in Appendix B. A similar coordinate system has been adopted by
Cheatham & Matalon (2000) in analysing the structure of diffusion flames and by
Ida & Miksis (1998) in examining the dynamics of thin films, but only the relevant
equations within the approximations they used were specified. A two-dimensional
version of these equations also appeared in the discussion of an evolving detonation
front by Yao & Stewart (1996).

Let e1 and e2 denote unit vectors tangential to the parametric curves ξ2 = const.
and ξ1 = const., respectively, then n = e1 × e2 is a unit normal and the three vectors
e1, e2, n form an orthogonal triad of unit vectors. The orientation of the coordinates is
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x3

x1

x2

P

n

n
e

1
e

2

ξ
2 ξ

1

r
rf

Flame sheet

Figure 1. The curvilinear coordinates.

chosen such that n points in the direction of the burned gas. The governing equations
(2.1)–(2.6) can be expressed in terms of the new coordinate system if the scale factors

l1 = a1(1 − nκ1), l2 = a2(1 − nκ2), l3 = 1

are used in the computation of the vector differential operators (see Appendix B),
and the transformation

∂

∂t
	→ ∂

∂t
+ q · ∇s − Vf

∂

∂n
(4.1)

is used to express time derivatives in the moving frame. (To avoid unnecessary
additional notation, the time variable in the moving frame is also denoted by t .) Here
κ1 and κ2 are the principal curvatures in the ξ1- and ξ2-directions, respectively, with
κ = κ1+ κ2 twice the mean curvature of the surface. Vf = −∂n/∂t represents the
velocity of the surface back along its normal and q = q1e1 + q2e2 with qi = li ∂ξi/∂t

the time rate of change of an arclength along the coordinate curve ξi . We note, in
particular, that the gradient operator takes the form

∇ = n
∂

∂n
+ ∇s, ∇s = e1

1

l1

∂

∂ξ1

+ e2

1

l2

∂

∂ξ2

,

where ∇s is the surface gradient; all other relevant operators are written down in
Appendix B.

We will avoid writing the general equations in the moving curvilinear system
and write only the relevant terms at each stage of the analysis. Furthermore, it is
convenient in the following development to express the velocity field in directions
normal and tangential to the sheet, writing v = v⊥ + u n, with u the velocity normal
to the sheet and v⊥ = v1e1 + v2e2 along the sheet, and introduce m ≡ ρ(u − Vf ) as
the mass flux normal to the sheet.

5. The flame zone
We consider the limit δ � 1 and, consistent with that, assume that 1/β � δ.

The flame structure now consists of a reactive–diffusive internal layer with thickness
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∼ O(δ/β) embedded inside another internal layer of thickness ∼ O(δ). In the limit
δ → 0 the reaction zone, and the thicker convective–diffusive preheat zone ahead of
it, shrink to the surface F = 0 that separates the burned products (F > 0) from the
fresh unburned gas (F < 0). The state of the fresh mixture is given by

θ = 0, YD = YDu
, YE = YEu

for F < 0, (5.1)

corresponding to hD = 0 and hE = ϕ. In the burned gas, the flame temperature
perturbation and the concentration of the unconsumed reactant are small as will be
verified later. Thus

θ = 1 + O(δβ−1), YD = 0, YE = YEu
(Φ − 1) + O(δβ−1) for F > 0. (5.2)

We have assumed here that MD is the reactant depleted at the reaction sheet, which
is always the case when ϕ = O(1); the appropriate modifications needed when ME is
the depleted reactant will be discussed below.

In the hydrodynamic zones, on either side of the flame, the state of the gas (5.1)–
(5.2) is therefore nearly uniform up to and including O(δ). The flow field is described
by incompressible equations: Euler’s equations to leading order with viscous effects
incorporated as O(δ) perturbations, but with piecewise-constant density and viscosity:
ρ = 1, λ = 1 on the unburned side, and ρ = 1/σ , λ = λb (corresponding to θ = 1)
on the burned side. The velocity field is denoted by v = V ⊥ + U n where U is the
velocity in a direction normal to the flame surface and V ⊥ = V1e1 +V2e2 is tangential
to the flame surface. The term flame speed is commonly used to refer to the flame
velocity relative to the unburned gas and is meaningful only in the asymptotic sense
considered here when the location F = 0 identifies the flame position unambiguously;
thus Sf = U |n=0− − Vf .

To examine the internal structure of the flame zone, we introduce the stretching
transformation

η =

∫ n/δ

0

1

λ
dn′, (5.3)

which implies† that

λ
∂

∂n
=

1

δ

∂

∂η
, ∇s 	→ ∇s +

(
∂λ

∂θ

∂η

∂λ
∇sθ

)
∂

∂η
,

and seek solutions in power series of δ, namely of the form u = u
(0)

+ δu
(1)

+ · · ·. These
solutions must then be matched with the solutions in the hydrodynamic regions,
accomplished by comparing their behaviour as η → ±∞ with the corresponding
expansion of the outer variables at n = 0±. The latter are of the form

U � U
(0)
∣∣∣
n=0±

+ δ

{
∂U

(0)

∂n

∣∣∣∣∣
n=0±

∫ η

0

λ dη′ + U
(1)
∣∣∣
n=0±

}

and are obtained using a Taylor series expansion near n = 0, and the transformation
(5.3).

† Note that since, to leading order, the temperature θ is found to depend only on η, ∇s 	−→ ∇s +
O(δ). The O(δ) term will not be needed in the subsequent analysis.
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To leading order the governing equations reduce to

∂m
(0)

∂η
= 0, (5.4)

m
(0) ∂θ

(0)

∂η
− ∂2θ

(0)

∂η2
= 0, (5.5)

m
(0) ∂h

(0)

i

∂η
− ∂2h

(0)

i

∂η2
= lei

∂2θ
(0)

∂η2
, (5.6)

m(0) ∂u
(0)

∂η
= −∂p

(0)

∂η
+

4

3
Pr

∂2u
(0)

∂η2
, (5.7)

m
(0) ∂v

(0)

⊥
∂η

= Pr
∂2v

(0)

⊥
∂η2

. (5.8)

Solutions that satisfy the jump conditions (3.2)–(3.5) at η = 0 and match (5.1)–(5.2)
as η → ±∞, are

m
(0)

= 1, v
(0)

⊥ =
(
v

(0)

⊥
)

−∞
,

θ
(0)

=

{
eη

1
, ρ

(0)

=

{
{1 + (σ − 1) eη}−1

,

σ −1,

η < 0

η > 0,

h
(0)

D =

{−le
D
η eη

0
, h

(0)

E =

{
ϕ − le

E
η eη,

ϕ,

η < 0

η > 0,

u
(0)

=

{
u

(0)

−∞ + (σ − 1) eη, η < 0

u
(0)

−∞ + σ − 1, η > 0,

p
(0)

=

{
p

(0)

−∞ +
(

4
3
Pr − 1

)
(σ − 1) eη, η < 0

p
(0)

−∞ − (σ − 1), η > 0,

where the subscript −∞ denotes values as η → −∞. Matching the expressions for
the pressure and velocities with the solutions in the hydrodynamic regions yields the
jump conditions [[

U
(0)]]

= σ − 1,
[[
V

(0)

⊥
]]

= 0,
[[
P

(0)]]
= −(σ − 1) (5.9)

across the flame, where [[·]] = (·)n=0+ − (·)n=0− denotes the jump. We also obtain that

Sf � U
(0)
∣∣∣
n=0−

− V
(0)

f = 1, (5.10)

which states that, to leading order, the flame speed equals the laminar flame speed.
These results will be further discussed below.

The continuity and transport equations for the mass flux, temperature and
enthalpies, at the next order, take the form

1

λ

∂m
(1)

∂η
= κ − ρ

(0)

K, (5.11)
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∂θ
(1)

∂η
− ∂2θ

(1)

∂η2
= −

(
m

(1)

+ λκ
)∂θ

(0)

∂η
, (5.12)

∂h
(1)

i

∂η
− ∂2h

(1)

i

∂η2
= −

(
m

(1)

+ λκ
)∂h

(0)

i

∂η
+ lei

∂2θ
(1)

∂η2
− lei λκ

∂θ
(0)

∂η
, (5.13)

where K is the flame stretch given by K = −Vf κ + ∇s · v⊥ (see Appendix A). It can
also be expressed, in general, as K = Sf κ +Ks identifying the separate contributions
due to curvature κ = −∇ · n and strain Ks = −n · E · n, but in the present context it
appears only in the perturbation terms and, since to leading order Sf � 1, it suffices
to use the approximation K � κ + Ks .

Equation (5.11) can be integrated to give

m
(1)

= f1 +

{
κI (η) − K J (η), η < 0

(κ − σ −1K) λb η, η > 0,
(5.14)

where f1 = f1(ξ1, ξ2, t) remains to be determined. Here

I (η) = −
∫ σ

Θ

λ(x)

x − 1
dx, J (η) = −

∫ σ

Θ

λ(x)

x(x − 1)
dx,

with Θ(η) = 1 + (σ − 1)eη and λb the value of λ at the reaction sheet (η = 0)
or, equivalently, at the state of the burned gas. For simplicity of presentation we
will avoid writing the explicit solutions for θ

(1)

and h
(1)

i and instead quote only the
essential results. Integrating (5.12) and (5.13) from η = −∞ to η = 0−, using the jump
conditions (3.2) and the matching conditions as η → −∞, we obtain

∂θ
(1)

∂η

∣∣∣∣∣
η=0−

= f1 +
γ1

σ
K , h

(1)

i

∣∣∣
η=0

= −lei γ2K,

where

γ1 =
σ

σ − 1

∫ σ

1

λ(x)

x
dx, γ2 =

1

σ − 1

∫ σ

1

λ(x)

x
ln

(
σ − 1

x − 1

)
dx.

Finally, by applying the jump relation (3.3) we find that f1 = (−α + γ1(σ − 1)/σ ) K

with α = γ1 + 1
2
le

eff
γ2 expressed in terms of an ‘effective’ reduced Lewis number

le
eff

= le
D

+ (le
E

− le
D
)
b G(a, b − 1; ϕ)

G(a, b; ϕ)
.

We note that the local concentration difference at the reaction sheet, which is
proportional to h∗

E − h∗
D = ϕ − δ(leE − leD ) γ2K , is always positive when ϕ = O(1)

implying that the deficient reactant in the fresh mixture is the one depleted. When
ϕ = O(δ) it is the sign of the right-hand side of this equality that determines which
of the two reactants is totally consumed; when positive MD is totally consumed
and consequently θ̂∗

f = h∗
D, when negative ME is totally consumed and consequently

θ̂∗
f = h∗

E. This ensures that the concentration of the unconsumed reactant |h∗
E − h∗

D| is
always positive, as it should be. When applied to the jump condition (3.3), the same
results for f1 and α are obtained in either case, so that the flow field and flame speed
are unaffected by these small modifications.
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The O(δ) correction to the normal velocity ahead of the flame can now be deduced
from (5.14) and the equation of state (2.6), by taking the limit η → −∞; we find

U
(1)
∣∣∣
n=0−

− V
(1)

f = −α K (5.15)

along with the jump relations

[[
U

(1)]]
= − 1

2
(σ − 1)γ2 le

eff
K,

[[
∂U

(0)

∂n

]]
= (σ − 1)κ. (5.16)

The momentum equations to O(δ) take the form

Pr
∂2v

(1)

⊥
∂η2

− ∂v
(1)

⊥
∂η

= λ

{
∇̃s p

(0)

+ ρ
(0)

D∗
⊥v

(0) − Pr
1

λ

∂λ

∂η

(
w

(0)

+ ∇̃su
(0)
)}

, (5.17)

∂p
(1)

∂η
= −∂u

(1)

∂η
− m

(1) ∂u
(0)

∂η
− λ ρ

(0)

D∗
nv

(0)

+ λ
∂u

(0)

∂η

+
4

3
Pr

(
∂2u

(1)

∂η2
− λκ

∂u
(0)

∂η

)
+

2

3
Pr

∂λ

∂η

{(
u

(0) − V
(0)

f

)
κ − K

}
, (5.18)

where D∗
⊥ A ≡ (DA/Dt)⊥ and D∗

n A ≡ (DA/Dt)n stand for the transverse and normal

components of the material derivative of the vector A as defined in (B 16), ∇̃s stands
for the leading term of the surface gradient, obtained simply by replacing li in ∇s

with ai , w
(0) ≡ κ1v

(0)

1 e1 + κ2v
(0)

2 e2, and v
(0)

= v
(0)

⊥ + u
(0)

n.
Although these equations can be easily integrated to construct explicit solutions

for v
(1)

⊥ and p
(1)

, the algebra is quite tedious and the details are of little interest. In
order to obtain the jump conditions for the corresponding outer variables across the
flame it suffices to integrate these equations once; matching with the solutions in the
hydrodynamic regions then yields

[[
V

(1)

⊥
]]

=

(
γ1 +

σ − λb

σ − 1
Pr

)[[
∂V

(0)

⊥
∂n

]]
+ (λb − 1) Pr

{
∇̃s

(
2U

(0) − P
(0))

+ 2W
(0)
}

, (5.19)

[[
P

(1)]]
= γ1

[[
∂P

(0)

∂n

]]
+ (σ − 1)γ2 le

eff
K − 2(λb − 1)Pr Ks + Γ κ, (5.20)

where W ≡ κ1V1e1 + κ2V2e2 and

Γ = (σ − 1)γ1 − (2Pr − 1)γ3 + 2Pr(σ − 1)λb, γ3 =

∫ σ

1

λ(x) dx.

As a matter of convention, here and hereafter, all terms on the right-hand side in
jump relations across n = 0 are to be evaluated at n = 0−. We also find that[[

∂V
(0)

⊥
∂n

]]
=

σ − 1

σ

{
D∗

⊥V
(0) − ∂V

(0)

⊥
∂n

+
(

W
(0)

+ ∇̃sU
(0)
)}

,

[[
∂P

(0)

∂n

]]
= −(σ − 1)κ +

σ − 1

σ

(
D∗

nV − ∂U
(0)

∂n

)
,

where V
(0)

= V
(0)

⊥ + U
(0)

n, but these, like (5.16), do not provide new information;
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they can be obtained equivalently by integrating the Euler equations, valid in the
hydrodynamic regions, across the flame surface.

6. The hydrodynamic model
The derivation in the previous section shows that, when δ � 1, a premixed flame

can be treated as a surface of density discontinuity. The problem then simplifies to
a hydrodynamic free-boundary problem. On either side of the flame sheet, described
by F (x, t) = 0, the Euler equations with viscous correction terms must be satisfied,
but with different densities and viscosities. Hence

∇ · v = 0, (6.1)

ρ
Dv

Dt
= −∇p + δPr ∇ · λ(∇v + ∇v
), (6.2)

with

ρ =

{
1
1/σ

, λ =

{
1, F < 0

λb, F > 0.
(6.3)

The jump conditions that must be satisfied across the flame are obtained by combining
the results (5.9) and (5.16)–(5.20). Correct to O(δ) these conditions can be written as

[[ρ(v · n − Vf )]] = δ
σ − 1

σ
γ1K, (6.4)

[[n × (v × n)]] = δ {−(λbPr + γ1)[[n × (∇ × v)]] + 2Pr (λb − 1) (n × (E · n) × n)} ,

(6.5)

[[p + ρ(v · n)(v · n − Vf )]]

= δ

{
γ1 [[n · ∇p]] +

σ − 1

σ
γ1Vf K + Γ κ + 2Pr(λb − 1) ( n · E · n)

}
, (6.6)

with the right-hand side evaluated at n = 0−. The equation for the flame speed
Sf ≡ v · n − V f that completes the formulation is obtained by combining (5.10) and
(5.15), to give

Sf = 1 − δα K, (6.7)

with

α =
σ

σ − 1

∫ σ

1

λ(x)

x
dx +

β(Le
eff

− 1)

2(σ − 1)

∫ σ

1

λ(x)

x
ln

(
σ − 1

x − 1

)
dx. (6.8)

Equation (6.7) can alternatively be thought of as an equation for the flame surface F .
Here n is the unit normal to the flame surface pointing in the direction of the burned
gases, Vf is the normal velocity of the surface and κ = −∇ · n its curvature, and K

is the flame stretch. See Appendix A for general expressions for K in coordinate-free
form.

We note that spatial and temporal density variations in the burned gas region,
resulting from the temperature perturbations, are O(δβ−1) and thus much smaller in
magnitude. Similarly, variations in the concentration of the unconsumed reactant in
the burned gas are also O(δβ−1). These can, therefore, be determined a posteriori by
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solving

ρ
DY

Dt
= 0, ρ

Dθ

Dt
= 0, (6.9)

subject to

Y ∗ = β−1Y
u

|ϕ + δ(leD − leE) γ2 K | , (6.10)

θf =

{
1 − δβ−1leD γ2 K when Y ∗

D = 0

1 − β−1(δleE γ2 K − ϕ) when Y ∗
E = 0

(6.11)

at n = 0+. Here Y ∗ denotes the mass fraction of the unconsumed reactant that
leaks through the reaction zone, determined by the sign of the quantity within
the absolute value in (6.10), and θf is the flame temperature. When ϕ = O(1), the
deficient reactant in the fresh mixture is also the one that is locally deficient in the
reaction zone; then Y ∗

D = 0 and Y ∗ = Y ∗
E. The same is true when ϕ = O(δ) provided

ϕ + δ(leD − leE) γ2 K > 0. Otherwise the excess reactant in the fresh mixture is locally
deficient in the reaction zone, Y ∗

E = 0 and Y ∗ = Y ∗
D . The flame temperature always

depends on the enthalpy of the reactant that is being totally consumed.
The model presented here is a generalization of the results of Matalon & Matkowsky

(1982, 1983), for mixtures spanning the whole range from lean to rich conditions,
with arbitrary reaction orders and temperature-dependent transport properties. Their
results† can be easily recovered by setting λb = 1, so that

γ1 =
σ

σ − 1
ln σ, γ2 =

1

σ − 1

∫ 0

−∞
ln {1 + (σ − 1)ez} dz, γ3 = σ − 1,

and by interpreting le
eff

as being associated with the deficient component in the
mixture. We note the presence of an ‘effective’ Prandtl number, λPr , which increases
through the flame as a result of the increase in temperature, appearing in the
momentum equations and producing changes in the rate of strain that contribute
to the overall momentum jump across the flame. Variations in thermal and mass
diffusivities with temperature appear in the coefficients γ1, γ2 and α. The importance
of incorporating these effects in studies of flame dynamics will be illustrated below
for simple flame configurations.

The jump conditions (6.4)–(6.6) across the flame, representing changes in mass
and momentum, consist of Rankine–Hugoniot conditions to leading order, with
corrections of the order of the flame thickness that account for transverse fluxes and
accumulation. Here too, the terms corresponding to the strain rate are modified by
the change in viscosity through the flame.

The flame speed relation (6.7) reiterates its linear dependence on stretch (Matalon &
Matkowsky 1982), with a coefficient α known as the Markstein number. With the
effective Lewis number Le

eff
for the mixture, given by

Le
eff

=
Le

E
+ Le

D
A

1 + A , A ≡ G(a, b; ϕ)

b G(a, b − 1; ϕ)
− 1, (6.12)

† There were some typographical and minor errors in these publications: In Matalon &
Matkowsky (1982) the second term in the curly bracket on the right-hand side of (6.12), and
equivalently in (A 2) of the appendix in Matalon & Matkowsky (1983), should have a + sign.
Further, in Matalon & Matkowsky (1983), there is a wrong sign in (A 5) and as a result (A 11)
should include the additional term q∇ × n on its right-hand side. Consequently the second term in
the curly bracket on the right-hand side of (3.13) should be removed.
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Figure 2. The dependence of the Markstein number on equivalence ratio for selected fuel/air
mixtures. For hydrocarbon fuels, the dependence is also shown for non-unity reaction orders.

the Markstein number depends explicitly on the mixture’s equivalence ratio, as well
as on the reaction orders with respect to each of the two reactants. The effective
Lewis number (6.12) is expressed as a weighted average of the Lewis numbers of
the two reactants. Under exact stoichiometry, since G(a, b; 0) = 
(a + b + 1), we find
that A = a/b and the effective Lewis number is the mean of the Lewis numbers
of the two reactants, Le

eff
= (bLe

E
+ aLe

D
)/(a + b). As ϕ increases, the deficient

reactant in the mixture becomes more and more heavily weighted. For conditions
sufficiently far from stoichiometry, i.e. ϕ → ∞, the asymptotic relation G(a, b, z) ∼
βb
(a + 1) implies that A → ∞, and the effective Lewis number is that of the
deficient reactant. When a = b = 1, A = 1 + ϕ and we recover the expression for
Le

eff
that appeared in Bechtold & Matalon (2001). The dependence of the Markstein

number on equivalence ratio is shown in figure 2 for selected fuel/air mixtures with
a = b = 1, and for the hydrocarbon–air mixtures with non-unity values as well
based on those suggested by Westbrook & Dryer (1981). The computations are based
on the realistic choice λ � T 1/2 and, for purpose of comparison, the same values
of σ = 6 and β = 10 have been chosen for all cases. While there are significant
differences at lean conditions with the heavier fuels corresponding to larger values
of α, all curves tend to the same limit for rich conditions, being all associated with
the binary mass diffusivity of O2–N2. In real systems, however, this limit may vary
from one mixture to another as a result of variations in β and σ . For the heavy
hydrocarbon–air mixtures, an increase in mixture strength from lean to rich results
in a decrease in the effective Lewis number and hence a decrease in the Markstein
number. For the lighter fuels, such as methane and hydrogen, the Markstein number
increases with mixture strength. Finally, non-unity reaction orders, that appear to
better correlate experimental data, seem to have a significant effect on the Markstein
number, particularly at near-stoichiometric conditions.

The convention used in this paper is to define the flame speed relative to the gas
velocity ahead of the flame. Alternatively one could use a definition of flame speed,
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and consequently of Markstein number, defined relative to the gas velocity of the
burned gas behind the flame. Then, using (6.7) and the jump condition (6.4), the
flame speed normalized with respect to the laminar flame speed defined relative to
the burned gas is Sb

f /σ = 1 − δαbK , with the Markstein number

αb =
1

σ − 1

∫ σ

1

λ(x)

x
dx +

β(Le
eff

− 1)

2(σ − 1)

∫ σ

1

λ(x)

x
ln

(
σ − 1

x − 1

)
dx . (6.13)

It is important to note that the Markstein number is uniquely defined only
in the asymptotic limit considered here, where the whole flame is treated as a
hydrodynamic discontinuity that coincides with the reaction sheet and the flame
speed is evaluated at this location. In real flames of finite thickness the actual
gas speed, and hence Sf , is only known to within an amount proportional to the
flame thickness. Thus, the magnitude of the Markstein correction is not uniquely
determined. Experimental measurements, on the other hand, are typically taken at a
specific reference location inside the flame zone. To make meaningful comparisons
between theory and experiments the Markstein number must therefore be adjusted
by properly calculating the gas velocity at the chosen reference location, as carried
out by Tien & Matalon (1991) and more recently, under more general conditions, by
Bechtold & Matalon (2001). Graphs similar to figure 2 were plotted in Bechtold &
Matalon (2001) for the adjusted Markstein number, showing good agreement with
experimental measurements. Those results also show that the magnitude of the
Markstein number decreases as a result of that adjustment and that light fuels may
possibly have negative values at lean conditions.

7. Vorticity production
Although the jump in vorticity across the flame front can be easily deduced from

equations (6.1)–(6.2) using the jump relations derived above, it is instructive to examine
the source of the vorticity production by determining its distribution inside the flame
zone. An equation for the vorticity vector ω = ∇ × v can be obtained by taking the
curl of the momentum equation (2.2) of the form

Dω

Dt
+ (ω · ∇) v − (∇ · v) ω =

1

ρ2
(∇ρ × ∇p) + δPr ∇ ×

(
1

ρ
∇ · λΣ

)
. (7.1)

In the flame zone this equation simplifies, to leading order, to

∂ωn

∂η
= 0,

∂

∂η

(
ω⊥

ρ
(0)

)
= − ∂

∂η

(
n × ∇̃sp

(0)

ρ
(0)

)
+ Pr

∂

∂η

{
1

λρ
(0) n ×

(
∂2v

(1)

⊥
∂η2

+
∂λ

∂η

(
w

(0)

+ ∇̃su
(0)))}

,

where ω = ω⊥e1 + ωnn. Clearly, the normal component of the vorticity is conserved
through the flame. Variations in the transverse components may only result from
the baroclinic and viscous diffusion effects, while intensification due to bending and
stretching of vortex lines (the second and third terms of (7.1)) are negligible. It is easy
to verify from (3.4)–(3.5) that ω remains continuous at the reaction sheet, so that the
solution that matches the vorticity Ω in the upstream hydrodynamic region, i.e. as
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η → −∞, is of the form

ωn = Ωn, (7.2)

ω⊥ = ρ
(0)

Ω⊥ +
(
ρ

(0) − 1
)(

n × ∇̃sp
(0))

+
Pr

λ
n ×

{
∂2v

(1)

⊥
∂η2

+
∂λ

∂η

(
w

(0)

+ ∇̃su
(0))}

, (7.3)

where Ω = Ω⊥ + Ωnn is evaluated at n = 0−. Although the explicit solution for ω⊥
can be easily obtained, it requires the solution of v

(1)

⊥ , which we have avoided writing
down. Nevertheless, by examining the limiting behaviours of (7.3) as η → ±∞, one
immediately finds the jump relation

[[ω⊥]] = −σ − 1

σ
Ω⊥ − σ − 1

σ

(
n × ∇̃sP

(0))
.

While there are variations in vorticity introduced by the gas viscosity, these appear to
have no overall effect on the changes across the flame, to leading order. Indeed, from
the solution of v

(1)

⊥ it can be verified that the term multiplying Pr in (7.3) vanishes as
η → −∞ and is identically zero for η � 0.

To determine the O(δ) corrections to the vorticity jump, it is not necessary to
carry the analysis in the flame zone to higher orders. All that is needed is the jump
in derivatives of the velocities and these can be obtained directly by evaluating the
momentum equation (6.2) on either side of the flame. We will not write the general
result explicitly, because it involves lengthy expressions which can be deduced in any
particular situation.

To summarize, the vorticity field in the hydrodynamic regions on either side of the
flame is obtained by solving

ρ
Dω

Dt
− ρ (ω · ∇) v = δPrλ∇2ω (7.4)

subject to the jump condition

[[ω]] = −σ − 1

σ
{n × (ω × n) + n × ∇p} + O(δ). (7.5)

Thus, even when the flow of unburned gas is irrotational, vorticity is being generated
at the flame and transported downstream, so that the flow of burned gas is, in general,
rotational. To leading order, the normal component of vorticity is preserved across
the flame front, while the tangential components suffer a jump. The jump in vorticity
results from the drop in density of the fluid particles transporting vorticity through
the flame zone and from baroclinic production. Changes in vorticity introduced by
the gas viscosity are secondary effects appearing only at O(δ).

For a steady two-dimensional flow the flame sheet is represented by a curve in the
plane of motion and the only relevant vorticity component, ω say, is perpendicular
to that plane. If use is made of equation (6.2) and of the fact that u = 1 ahead of the
flame, (7.5) reduces to

[[ω]] =
σ − 1

σ

∂

∂ξ

(
v2

2

)
. (7.6)

The jump in vorticity is seen here to depend on the variation of the velocity component
tangential to the flame surface, as previously noted by Uberoi, Kuethe & Menkes
(1958).
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8. Some simple flame configurations
In this section we consider some simple flame configurations and, in particular,

illustrate features related to the effect of variable transport on flame characteristics
and to the production and distribution of vorticity inside and across the flame.

8.1. Plane flame

When ignited at one end, a plane flame propagates into a quiescent fresh mixture at a
unit speed, so that x = −t denotes its position. The burned gas moves away from the
front at a speed u = σ − 1. A plane flame experiences no stretch, and no vorticity is
produced in the flame zone. A stability analysis, based on the model presented here,
yields an expression for the growth rate � of small disturbances of the form

� = �0k − δ
{
B1 + β(Leeff − 1) B2 + PrB3

}
k2 + · · · ,

where k is the wavenumber and the coefficients �0, B1, B2, B3, given by

�0 =
1

σ + 1

(√
σ 3 + σ 2 − σ − σ

)
,

B1 =
1

4

σ 3 − σ + 2σ 2(2�0 + σ + 1)

σ + (σ + 1)�0

,

B2 =
1

2

σ (σ − 1)(�0 + 1)(�0 + σ )

σ + (σ + 1)�0

,

B3 =
1

2

σ (σ − 1)2

σ + (σ + 1)�0

,

are all positive. Such an expression was derived previously by Clavin & Garcia (1983)
who, for the purpose of the analysis, wrote the linear version of the jump conditions
(6.4)–(6.6). The leading term �0, which increases with increasing k, is the Darrieus–
Landau instability. The three other terms correspond to thermal, mass and viscous
diffusion, respectively. When the gas viscosity is assumed constant, the coefficient
B3 = 0; see Matalon & Matkowsky (1982) & Pelce & Clavin (1982). In contrast, with
the more realistic variable transport one finds that viscosity plays an equal role to
other diffusion effects and always has a stabilizing influence. Thermo-diffusive effects
have stabilizing influences on the short waves provided Leeff is sufficiently larger than
1 and variable transport properties serve to modify the critical Lewis number.

8.2. Spherically expanding flame

We consider an outwardly propagating flame originating from a point source, that
propagates into a combustible mixture in an infinite space. Once the flame reaches
a size R0 of several diffusion lengths, i.e. a few millimetres, it can be treated as a
hydrodynamic discontinuity. The burned gas trapped by the flame remains motionless,
while the flow induced in the fresh mixture corresponds to that of a source originating
at the flame front r = R(t). The propagation speed can be easily obtained from the
equation for Sb

f as

Ṙ = σ

(
1 − δαb 2σ

R

)
,

where the dot denotes differentiation with respect to t , and δ = LD/R0. Note that the
flame experiences a stretch rate K = 2Ṙ/R � 2σ/R that diminishes in time. Since
the flow field remains radial and normal to the front, no vorticity is being created at
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Figure 3. Propagation speed of a spherically expanding flame as a function of position.
Computed for constant as well as variable transport coefficients, for selected values of the
effective Lewis number and with δ = 0.01.

the flame. The irrotational flow in the unburned gas is given by

v = (σ − 1)

{
1 − 1

2
δβ(Le

eff
− 1)γ2

2Ṙ

R

}
1

r2
,

and, as required, tends to zero as r → ∞ and satisfies the mass conservation (6.4).
In figure 3 we have plotted the propagation speed against the flame position for

both cases, λ = 1 and λ � T 1/2. When the effective Lewis number leeff > le∗
eff , with

le∗
eff slightly negative and corresponding to αb = 0, the propagation speed increases

as the flame grows larger. The reverse is true when leeff < le∗
eff . At large radii, the

propagation speed eventually approaches the constant speed σ corresponding (in
dimensional form) to the laminar flame speed measured with respect to the burned
gas. For a given mixture, le∗

eff is associated with a critical value of the equivalence
ratio that identifies the transition from one behaviour to the other. For example,
for propane–air mixtures this critical value is φ � 1.3, and the propagation speed
increases in time for φ < 1.3 and decreases in time for φ > 1.3, as reported by
Addabbo, Bechtold & Matalon (2002), in agreement with the experimental results
reported by Strehlow (1984). The graph also shows that, depending on whether leeff

is less/greater than le∗
eff , the propagation speed is over-/under-estimated by assuming

that the transport properties are constant. With the more realistic temperature-
dependent transport coefficients, the flame must travel a larger distance to reach
the constant laminar speed σ . More important, however, is their influence on flame
stability. As shown by Addabo et al. (2002), the present model leads to stability results
more commensurate with experimental data. In particular, the critical Péclet number
that identifies the marginal stability conditions is shifted upwards by nearly 50% and
the predictions of cell size correlate better with observations.
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Figure 4. Schematic representation of a flame stabilized in a stagnation-point flow. Note the
diffraction of the streamlines at the flame front, resulting from the jump in the normal velocity
component.

8.3. Flame stabilized in a stagnation-point flow

We consider a flame stabilized in a stagnation-point flow of a bluff body of revolution,
as illustrated in figure 4. The flame may be treated as a hydrodynamic discontinuity
when its stand-off distance, which often is of the order of 1–2 cm, is large compared to
the nominal flame thickness LD . As a result of thermal expansion, the flame displaces
the upstream flow a distance a, so that the potential flow ahead is

u = −2ε (z − a), v = ε r,

where ε is the strain rate. The displacement a is related to the standoff distance d

through the relation d − a = 1/2ε − δα, obtained from (6.7). The full evaluation of
these constants requires first determining the flow field in the burned gas region, as
carried out in Eteng, Ludford & Matalon (1986) for the case of constant properties,
and is based on solving the vorticity equation (7.4) subject to the jump condition

[[ω]] = −σ − 1

σ

{
1 − δε

2

σ

(
Prλb − 1

2
σ leeff γ2

)}
ε2r, (8.1)

which has been developed here to O(δ) as outlined above. The rotational flow behind
the flame is thus found to be

u = −2f (z), v = r f ′(z),

where

f (z) =
σ − 1

σ
ε2z2 − 2

√
σε z + δ

σ − 1

σ 2

(
Prλb − 1

2
σ leeff γ2

)
ε3z2.

Finally, the flame stand-off distance is

d =
σ

σ 1/2 + 1
ε−1 − δ

{
γ1 +

σ 1/2 − 1

σ 1/2 + 1
Prλb +

σ

σ 1/2 + 1
leeff γ2

}
.

In figure 5 we show the dependence of d on σ for selected values of leeff , calculated
with λ = 1 and λ � T 1/2. With realistic transport properties the flame stand-off
distance decreases as the Lewis number decreases.
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Figure 5. The stand-off distance d of a flame in a stagnation-point flow as a function of
the thermal expansion parameter σ for selected values of the reduced Lewis number leeff ;
calculated with δ = 0.01.

It is instructive to examine the primary variations in vorticity throughout the flame
which led to the production (8.1). From (7.3) the vorticity distribution, to leading
order, is given by

ω =




(
(σ − 1)eη

1 + (σ − 1)eη
+

σ − 1

σ
Pr g(η)

)
ε2r, η < 0

σ − 1

σ
ε2r, η > 0,

(8.2)

where

g(η) =
σ eη

1 + (σ − 1)eη
+

λb

λ(η)
eη/Pr +

Pr

λ(η)

∫ 0

η

σ eη′
λ(η′)

1 + (σ − 1)eη′ e(η−η′)/Pr dη′.

Note that the vorticity production occurs in the preheat zone. The first term represents
the baroclinic production and the second term the effects due to the gas viscosity.
As noted earlier, the latter does not contribute to the overall jump across the flame
and indeed g(0) = 0 and g(η) → 0 as η → −∞. In figure 6 the vorticity distribution
throughout the flame zone is plotted at several radial distances r and the separate
contributions are illustrated for the case r = 5.

8.4. Bunsen burner flame

We consider now the Bunsen burner flame. The flow of unburned gas issuing from
the burner of width 2a is assumed to be a Poiseuille flow, as shown in figure 7. The
flame can be treated as a surface of discontinuity since typically a � LD . Using a as a
unit of length and the laminar flame speed as a unit of speed, the gas velocity ahead
of the flame is given by v = u(y)i where u = U (1 − y2) with U the (dimensionless)
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Figure 6. (a) Vorticity variations across the flame zone at several radial distances. (b) The
separate contributions of baroclinic effect (dot-dashed curve) and gas viscosity (dashed curve)
for r = 5; the latter has a zero net contribution to the overall jump across the flame.

x

y

Figure 7. Bunsen burner flame and representative streamlines showing their refraction across
the flame front; the front was calculated based the equation F (x, y) = 0 with a prescribed
Poiseuille flow.

centreline velocity and y the transverse coordinate. If the flame front is described by
F (x, y) ≡ x − f (y) = 0, and ψ denotes the slope df/dy, unit vectors normal and
tangential to the flame front are given by

n =
i − ψ j

(1 + ψ2)1/2
, e =

ψ i + j
(1 + ψ2)1/2

,

with i, j unit vectors in the x, y-directions, respectively. Under steady conditions,
the flame speed is just the normal component of the gas velocity at the flame front,
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namely Sf = u(y)/(1 + ψ2)1/2. The stretch rate is given by

K =
ψ

1 + ψ2

du

dy
+

u

(1 + ψ2)1/2

1

(1 + ψ2)3/2

dψ

dy
, (8.3)

where the first term, equal to Ks , is due to strain and the second, equal to Sf κ , is due to
curvature. Since, to leading order, (1 + ψ2)1/2 � u, the flame stretch K � (1 + ψ2)−1/2 ψ ′

(where a prime denotes differentiation) and, correct to O(δ), the flame speed relation
(6.7) reduces to √

(1 + ψ2) − U (1 − y2) = δα
dψ

dy
. (8.4)

The solution

ψ � ∓U

[(
U + 1

U
− y2

)(
U − 1

U
− y2

)]1/2

− 2δα
U 3(1 − y2)2 y

U 2(1 − y2)2 − 1
(8.5)

is clearly limited to |y| < [(U − 1)/U ]1/2. The flame shape is given by x = H +∫ y

0
ψ(ȳ) dȳ where the integral can be expressed in terms of Elliptic functions and

H is the flame height. Note that ψ ′ is always positive implying that the flame is
everywhere concave-up. As U → ∞, the flame extends to y = ±1 and is given by
x � H ∓ U (y − y3/3) − δαUy2.

The solution (8.5) fails at the tip y = 0, because of a discontinuity in slopes, and
at the two end points y = ±[(U − 1)/U ]1/2, because the slopes become infinite there.
A complete description of the hydrodynamics near the flame tip and edges is quite
complex and is beyond the scope of this work. No general description has been given,
although a relevant discussion of slender flame tips was given by Buckmaster &
Crowley (1983). Insight can be obtained if one adopts the flame speed equation (6.7)
as an approximation, which states that the burning velocity is increased significantly
in the region of strong curvature. Then, near the tip, y = δη, the gas speed is nearly
constant � U , the stretch rate K � Sf κ is primarily due to curvature (with no
contribution from the strain rate), and

U

(1 + ψ2)1/2
= 1 − αU

(1 + ψ2)2
dψ

dη
.

A direct integration yields

α−1η = − ψ√
1 + ψ2

− 1

U
tan−1 ψ − 2

U
√

U 2 − 1
tanh−1

{√
U + 1

U − 1

√
1 + ψ2 − 1

ψ

}
,

which vanishes at η = 0 and matches with (8.5) as η → ±∞, thus connecting smoothly
the discontinuity in slopes observed on the larger scale y. Note that, as α decreases,
the variations in ψ occur only in a narrower and narrower region near the tip,
and that the solution is no longer valid when α < 0. This may be related to the
phenomenon of open tips (cf. Lewis & von Elbe 1987), observed in lean hydrogen–air
or rich propane–air mixtures for example, namely when the effective Lewis number
is sufficiently less than 1.

Near the edges, we write

y = ∓
√

U − 1

U
± 2δ2/3η, ψ = ∓δ1/3 Ψ,
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Figure 8. Vorticity generated at the flame front, calculated with δ = 0.05, σ = 6 and leeff = 4.

to obtain from (6.7) the equation

α
dΨ

dη
= −Ψ 2 + α2N−3 η,

with N ≡ α2/3/2[U (U − 1)]1/6, where again, stretch is primarily due to curvature. This
is a Ricatti equation which reduces to the linear Airy equation Φ

′′ −N−3 ηΦ = 0 when
applying the substitution Ψ = Φ ′/Φ , with solutions of the form Φ = C1Ai(Nη) +
C2 Bi(Nη). The solution that matches (8.5) as η → +∞ and extends the slope smoothly
to small values of η, is

ψ = δ1/3αN−2 Ai′(Nη)

Ai(Nη)
.

In reality, this region is affected by the presence of the burner, with the flame stabilized
by the heat conducted back to the rim.

The solution can be more simply illustrated if the flame speed is integrated
numerically with K given by (8.3), while retaining δ small. The solution calculated
with δ = 0.05 is shown in figure 7. Note the concavity of the flame surface which
indicates that the flame is generally stretched (K > 0) except near the tip, where it is
compressed (K < 0). Also shown is the refraction of streamlines crossing the flame
front. Since the normal velocity component increases six- to seven-fold while the
velocity components tangential to the flame remain unchanged (to leading order),
streamlines generally rotate towards the direction of the normal.

The vorticity generated at the flame can be calculated to leading order from (7.6)
with the O(δ) correction following the scheme sketched above. In figure 8 we show
the vorticity generated behind the flame for different values of U . We see that large
vorticity is being generated at the highly curved region of the flame near the tip. Along
the axis of the burner, the streamline is parallel to the axis. Adjacent streamlines,
however, are strongly rotated towards the normal. When moving further away from
the axis, the vorticity generated at the front reduces and thus causes a relatively
smaller change in the streamline rotation, as illustrated in figure 9. The behaviour
shown in figure 8 changes significantly near the extremity of the tip when increasing
U or decreasing the Lewis number. It is found that a pair of counter-rotating vortices
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Figure 9. Sketch of streamlines rotated by the vorticity generated at the flame, in the region
near the tip.

is then generated and this may possibly correspond to the opening of the tip discussed
earlier.

9. Conclusions
Premixed flames have often been treated as propagating fronts separating the cold

fresh mixture from the hot burned products. As such the mathematical problem
reduces to a fluid dynamic problem involving a free boundary, and one is left to
identify the law of propagation, which is commonly expressed as an equation for
the flame speed. In the early theories and in the more current numerical simulations
based on the so-called G-equation, the propagation law is specified. The objective
of this work has been to formulate a hydrodynamic model that treats the flame
as a front and systematically derive an equation for the flame speed by resolving,
on the relatively smaller diffusion scale, the internal structure of the flame. The
formulation also consists of modified jump conditions in the form of corrected
Rankine–Hugoniot relations that need to be satisfied across the flame front. The
flame speed and jump conditions mimic the diffusion processes occurring in the
flame zone and depend explicitly on all the relevant physico-chemical parameters.
The present theory extends the earlier work of Matalon & Matkowsky (1982) by
(i) adopting an intrinsic coordinate system and thus presenting a formulation in
coordinate-free form, (ii) using a two-reactant model and thus extending the results
to mixtures that span from lean to rich conditions, (iii) using arbitrary reaction orders
and thus allowing a global representation of more complex reaction schemes, and
(iv) allowing temperature-dependent transport coefficients and thus improving the
quantitative predictions of the model.

The multi-scale analysis presented in this paper assumes that the flame is only
affected by disturbances evolving on the time scale associated with the external flow.
Consequently the flame structure that includes the preheat and the reaction zones
remains quasi-steady and, being thin, also quasi-planar. Our model captures the
well-known Darrieus–Landau instability, clarifies the influence of thermal, mass and
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viscous diffusion and identifies the mechanism of vorticity production, as illustrated by
some simple flame configurations. However, it does not capture another well-known
form of flame instability associated with oscillations that has been understood well in
constant-density flows. To do so requires incorporating the time-dependent dynamics
associated with the diffusive effects that occur on a scale comparable with the preheat
zone in the analysis. While this has not been done in general, the high-frequency
analysis of Joulin (1994) and Clavin & Joulin (1997) is a step in that direction.

This work has been partially supported by the National Science Foundation under
grants DMS-0072588 and CTS-0074320 and by NASA’s Microgravity Combustion
Program under grant NAG3-2511.

Appendix A. Flame stretch
A surface element A made up of points on the flame surface that travel along it

with a velocity v⊥ is, in general, deformed by the motion so that A varies with time. A
measure of this deformation is the proportionate rate of change of the surface element,
i.e. K = A−1dA/dt , referred to as flame stretch (cf. Williams 1985; Buckmaster &
Ludford 1982). We note that d/dt here is not a material derivative since the surface
element is not made up of the same fluid particles. The definition clearly requires the
identification of a flame surface and is, therefore, meaningful only in the asymptotic
sense considered here where it is unambiguously chosen as the surface that results
when δ → 0.

Flame stretch characterizes the distortion of the flame surface resulting from its
propagation, with speed Vf , and from the underlying fluid motion along the surface,
with velocity v⊥. It has units of s−1 and its dimensionless form, often referred to as
the Karlovitz number, is thus obtained after multiplication by the factor δLD/SL. A
general expression in coordinate-free form was first given by Matalon (1983) as

K = Vf ∇ · n − n · ∇ × (v × n). (A 1)

Expanding the last term on the right, this expression can be rewritten in the form

K = −Sf ∇ · n − n · E · n

identifying the separate contributions due to curvature κ = −∇ · n and strain Ks =
− n · E · n, namely K = Sf κ + Ks . Note that only when the flame can be treated as
a hydrodynamic discontinuity with the flame speed equal to 1 to leading order, is the
total stretch K � κ + Ks the sum of curvature and strain.

When intrinsic surface coordinates ξ1, ξ2 are used, (A 1) takes the form

K = −Vf κ +
1

a1a2

{
∂(a2v1)

∂ξ1

+
∂(a1v2)

∂ξ2

}

or, noting that on the flame surface l1 = a1 and l2 = a2, the form K = −Vf κ +∇s · v⊥.

Appendix B. Curvilinear coordinates
Let r = r(x, t) be the vector position of a point P in space, measured at time t ,

with respect to a fixed coordinate system, where x = (x1, x2, x3). Let the reaction sheet
surface, F (x, t) = 0, be parameterized by the two surface coordinates (ξ1, ξ2) aligned
with the principal directions of curvature at each point of the surface. The reaction
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sheet, at any instant t , is thus described by r = rf (ξ1, ξ2, t). The position of the point
P in space may be expressed in terms of the distance n from the reaction sheet and
the position vector rf of the projection of P on the surface (see figure 1), namely

r = rf (ξ1, ξ2, t) + n n(ξ1, ξ2, t), (B 1)

where n denotes a unit normal to the surface and, for definiteness, is considered to
point in the direction of the burned gas. Let e1 and e2 denote unit vectors tangential
to the parametric curves ξ2 = const. and ξ1 = const., respectively, then

e1 =
1

a1

∂ rf

∂ξ1

, e2 =
1

a2

∂ rf

∂ξ2

, (B 2)

with ai = |∂ rf /∂ξi | . The three vectors e1, e2, n thus form an orthogonal triad of unit
vectors and (ξ1, ξ2, n) may be taken as curvilinear coordinates of P in these three
directions, respectively.

Relation (B 1) serves as the transformation that relates the rectangular coordinates
(x1, x2, x3) to the new coordinates, and can be inverted to express ξ1, ξ2, n in terms
of x1, x2, x3, assuming that the correspondence is unique. Standard results from
differential geometry (e.g. Weatherburn 1961) provide the scale factors

l1 = a1(1 − nκ1), l2 = a2(1 − nκ2), l3 = 1, (B 3)

used in the computation of the vector differential operators; here κ1 and κ2 are the
principal curvatures in the ξ1- and ξ2-directions, respectively, so that κ = κ1+ κ2 is
twice the mean curvature of the surface. The scale factors of curvilinear coordinates
in general are not independent but must satisfy six compatibility differential relations
(Lamé 1859), also known as Lamé’s relations; cf. Struik (1961) and Weatherburn
(1961). In the present case, since l3 = 1, they reduce to the three relations

∂

∂ξ2

(a1κ1) = κ2

∂a1

∂ξ2

,

∂

∂ξ1

(a2κ2) = κ1

∂a2

∂ξ1

,

∂

∂ξ1

(
1

a1

∂a2

∂ξ1

)
+

∂

∂ξ2

(
1

a2

∂a1

∂ξ2

)
+ a1a2 κ1κ2 = 0.




(B 4)

We note that in two dimensions, when the surface reduces to a curve and a2 = 0, one
may take a1 = 1 without loss of generality, which amounts to ξ1 being a measure
of the arclength; otherwise a1 and a2 cannot be both taken equal to 1 except for
developable surfaces.

Vector operators in the curvilinear coordinates can be found in textbooks and will
not be repeated here. We find it convenient, however, to introduce the surface gradient

∇s = e1

1

l1

∂

∂ξ1

+ e2

1

l2

∂

∂ξ2

,

so that ∇ = ∇s + n∂/∂n. Expressions for the rate of strain tensor in the curvilinear
coordinates can be found in Goldstein (1938), for example. The only complication
arises from the fact that the curvilinear coordinates (ξ1, ξ2, n) are attached to a
moving surface. If the time variable in the moving frame is also denoted by t (to
avoid unnecessary additional notation), time derivatives in the moving frame are
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related to those in a fixed system via

∂

∂t
	→ ∂

∂t
+

∂ξ1

∂t

∂

∂ξ1

+
∂ξ2

∂t

∂

∂ξ2

+
∂n

∂t

∂

∂n

=
∂

∂t
+ q · ∇s − Vf

∂

∂n
, (B 5)

where Vf = −∂n/∂t and q = q1e1 + q2e2 with qi = li ∂ξi/∂t for i = 1, 2. Here
Vf represents the velocity of the surface back along its normal and qi is the time
rate of change of an arclength along the coordinate curves ξi . Time derivatives of
a scalar in the moving frame are easily expressed by means of the transformation
(B 5). Its application to a vector, however, necessitates finding expressions for the
derivatives of the unit vectors that can be appropriately decomposed in the e1-, e2-,
n-directions.

Spatial derivatives of the unit vectors
Spatial derivatives of the units vectors can be found in standard textbooks (e.g.

Batchelor 1967; Weatherburn 1961) where

∂e1

∂ξ1

= − 1

a2

∂a1

∂ξ2

e2 + a1κ1n
∂e1

∂ξ2

=
1

a1

∂a2

∂ξ1

e2

∂e1

∂n
= 0,

∂e2

∂ξ2

= − 1

a1

∂a2

∂ξ1

e1 + a2κ2n
∂e2

∂ξ1

=
1

a2

∂a1

∂ξ2

e1

∂e2

∂n
= 0,

∂n
∂ξ1

= −a1κ1e1

∂n
∂ξ2

= −a2κ2e2

∂n
∂n

= 0.




(B 6)

Time derivative of the unit vectors
We consider a fixed point in space noting that, since its coordinates in the

rectangular frame are fixed in time, dr/dt = 0. Differentiating (B 1) yields

∂ rf

∂t
+

∂ξ1

∂t

∂ rf

∂ξ1

+
∂ξ2

∂t

∂ rf

∂ξ2

+
∂n

∂t
n + n

{
∂n
∂t

+
q1

l1

∂n
∂ξ1

+
q2

l2

∂n
∂ξ2

}
= 0

or, equivalently

∂ rf

∂t
+

a1q1

l1
e1 +

a2q2

l2
e2 − Vf n + n

{
∂n
∂t

+
q1

l1

∂n
∂ξ1

+
q2

l2

∂n
∂ξ2

}
= 0. (B 7)

Since e1, e2, n are defined on the surface it is sufficient, for the determination of the
time rate of change of the unit vectors, to evaluate this last expression at n = 0.
Consequently, we find that

∂ rf

∂t
+ qo

1 e1 + qo
2 e2 − Vf n = 0, (B 8)

where the superscript o in qo
i indicates that qi has been evaluated at n = 0. We note

parenthetically that, by subtracting the last two expressions,(
a1

l1
q1 − qo

1

)
e1 +

(
a2

l2
q2 − qo

2

)
e2 + n

{
∂n
∂t

+
q1

l1

∂n
∂ξ1

+
q2

l2

∂n
∂ξ2

}
= 0, (B 9)

which can be verified later, for consistency.
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Differentiating (B 8) with respect to ξi , using that

∂2rf

∂ξi∂t
=

∂2rf

∂t∂ξi

=
∂

∂t
(aiei) =

∂ai

∂t
ei + ai

∂ei

∂t
,

yields

∂ai

∂t
ei + ai

∂ei

∂t
+

∂qo
1

∂ξi

e1 +
∂qo

2

∂ξi

e2 + qo
1

∂e1

∂ξi

+ qo

2

∂e2

∂ξi

− ∂Vf

∂ξi

n − Vf

∂n
∂ξi

= 0,

for i = 1, 2. When these two equations are projected onto the three directions e1, e2, n,
and use is made of (B 6), one finds the six relations

∂qo
1

∂ξ1

+
∂a1

∂t
+

qo
2

a2

∂a1

∂ξ2

+ a1κ1Vf = 0,
∂qo

2

∂ξ2

+
∂a2

∂t
+

qo
1

a1

∂a2

∂ξ1

+ a2κ2Vf = 0,

∂e1

∂t
· e2 − qo

1

a1a2

∂a1

∂ξ2

+
1

a1

∂qo
2

∂ξ1

= 0,
∂e2

∂t
· e1 − qo

2

a1a2

∂a2

∂ξ1

+
1

a2

∂qo
1

∂ξ2

= 0,

∂e1

∂t
· n + κ1q

o
1 − 1

a1

∂Vf

∂ξ1

= 0,
∂e2

∂t
· n + κ2q

o
2 − 1

a2

∂Vf

∂ξ2

= 0.




(B 10)

We note that in two dimensions, retaining only i = 1 and taking without loss of
generality a1 = 1, these relations (with the index 1 removed) simplify to

∂qo

∂ξ
+ κVf = 0,

∂e
∂t

· n + κqo − ∂Vf

∂ξ
= 0 ,

which were derived by Yao & Stewart (1996) and used to obtain a differential equation
for the rate of change of the orientation of the normal. A simple manipulation of
equations (B 10) yields the desired expressions:

∂e1

∂t
=

1

a1

{
qo

1

a2

∂a1

∂ξ2

− ∂qo
2

∂ξ1

}
e2 +

{
1

a1

∂Vf

∂ξ1

− κ1q
o
1

}
n,

∂e2

∂t
=

1

a2

{
qo

2

a1

∂a2

∂ξ1

− ∂qo
1

∂ξ2

}
e1 +

{
1

a2

∂Vf

∂ξ2

− κ2q
o
2

}
n,

∂n
∂t

=

{
κ1q

o
1 − 1

a1

∂Vf

∂ξ1

}
e1 +

{
κ2q

o
2 − 1

a2

∂Vf

∂ξ2

}
e2.




(B 11)

For a complete determination of the transformation (B 5), we proceed to derive
an expression for the vector q. Differentiating (B 7) with respect to n we find, after
collecting terms in the e1-, e2-directions respectively, the two relations

∂q1

∂n
=

1

a1

∂Vf

∂ξ1

− κ1q
o
1 ,

∂q2

∂n
=

1

a2

∂Vf

∂ξ2

− κ2q
o
2 , (B 12)

which can be recast in a vector form, as

∂q
∂n

= −∂n
∂t

. (B 13)

A direct integration yields

q1 = qo
1 +

(
1

a1

∂Vf

∂ξ1

− κ1q
o
1

)
n, q2 = qo

2 +

(
1

a2

∂Vf

∂ξ2

− κ2q
o
2

)
n. (B 14)

At this point it can be verified that the condition (B 9) is indeed satisfied.
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Material derivatives
As noted earlier, applying the transformation (B 5) to a scalar is straightforward.

Thus, with the velocity field expressed as v = u n + v⊥, the convective derivative for
a scalar φ in the moving frame is obtained from

Dφ

Dt
	→ ∂φ

∂t
+ (v⊥ + q) · ∇sφ + (u − Vf )

∂φ

∂n
.

For a vector field, however,

∂ F
∂t

	→ ∂ F
∂t

+ (q · ∇s)F − Vf

∂ F
∂n

=

2∑
i=1

{
∂Fi

∂t
+ q · ∇sFi − Vf

∂Fi

∂n

}
ei +

{
∂F3

∂t
+ q · ∇sF3 − Vf

∂F3

∂n

}
n

+ F1

{
∂e1

∂t
+

q1

l1

∂e1

∂ξ1

+
q2

l2

∂e1

∂ξ2

− Vf

∂e1

∂n

}

+ F2

{
∂e2

∂t
+

q1

l1

∂e2

∂ξ1

+
q2

l2

∂e2

∂ξ2

− Vf

∂e2

∂n

}

+ F3

{
∂n
∂t

+
q1

l1

∂n
∂ξ1

+
q2

l2

∂n
∂ξ2

}
, (B 15)

where we need to use expressions (B 6) and (B 11) for the spatial and time derivatives
of the unit vectors, in order to decompose the last three bracketed terms in the e1-,
e2-, n-directions appropriately. The algebra in simplifying these expressions is quite
tedious and is therefore presented for only one of these three terms; the other two
are carried out in a similar manner. Considering the terms multiplying F1, a direct
substitution of the derivatives of e1 yields

∂e1

∂t
+

q1

l1

∂e1

∂ξ1

+
q2

l2

∂e1

∂ξ2

− Vf

∂e1

∂n

=
1

a1

{
qo

1

a2

∂a1

∂ξ2

− ∂qo
2

∂ξ1

}
e2 +

{
1

a1

∂Vf

∂ξ1

− κ1q
o
1

}
n +

q1

l1

(
− 1

a2

∂a1

∂ξ2

e2 + a1κ1n
)

+
q2

l2

(
1

a1

∂a2

∂ξ1

e2

)

=

{(
a1q1

l1
− qo

1

)
κ1 +

1

a1

∂Vf

∂ξ1

}
n +

{
1

a2

∂a1

∂ξ2

(
qo

1

a1

− q1

l1

)
+

q2

l2

1

a1

∂a2

∂ξ1

− 1

a1

∂qo
2

∂ξ1

}
e2.

Although we have accomplished the required decomposition, each of the two
components can be further simplified by the repetitive use of (B 14) for q1 and
q2, Lamé’s relations (B 4) and the definition l1 = a1(1 − nκ1). We find that

∂e1

∂t
+

q1

l1

∂e1

∂ξ1

+
q2

l2

∂e1

∂ξ2

− Vf

∂e1

∂n
=

1

l1

∂Vf

∂ξ1

n − l2

l1

∂

∂ξ1

(
q2

l2

)
e2,

∂e2

∂t
+

q1

l1

∂e2

∂ξ1

+
q2

l2

∂e2

∂ξ2

− Vf

∂e2

∂n
=

1

l2

∂Vf

∂ξ2

n − l1

l2

∂

∂ξ1

(
q1

l1

)
e1,

∂n
∂t

+
q1

l1

∂n
∂ξ1

+
q2

l2

∂n
∂ξ2

= −
{

1

l1

∂Vf

∂ξ1

+
1

l2

∂Vf

∂ξ2

}
.
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Therefore,

∂ F
∂t

	→ ∂ F
∂t

+ (q · ∇s)F − Vf

∂ F
∂n

=

{
∂F1

∂t
+ q · ∇sF1 − Vf

∂F1

∂n
− F2

l1

l2

∂

∂ξ2

(
q1

l1

)
− F3

l1

∂Vf

∂ξ1

}
e1

+

{
∂F2

∂t
+ q · ∇sF2 − Vf

∂F2

∂n
− F1

l2

l1

∂

∂ξ1

(
q2

l2

)
− F3

l2

∂Vf

∂ξ2

}
e2

+

{
∂F3

∂t
+ q · ∇sF3 − Vf

∂F3

∂n
+

F1

l1

∂Vf

∂ξ1

+
F2

l2

∂Vf

∂ξ2

}
n.

In the moving frame, the convective derivative of the velocity field

Dv

Dt
≡ ∂v

∂t
+ 1

2
∇(v · v) − v × (∇ × v),

is obtained from

Dv

Dt
	→
{

∂v1

∂t
+ (v⊥ + q) · ∇sv1 + (u − Vf )

∂v1

∂n

+
uv1

l1

∂l1

∂n
− v2

l1l2

(
v2

∂l2

∂ξ1

− v1

∂l1

∂ξ2

)
− v2

l1

l2

∂

∂ξ2

(
q1

l1

)
− u

l1

∂Vf

∂ξ1

}
e1

+

{
∂v2

∂t
+ (v⊥ + q) · ∇sv2 + (u − Vf )

∂v2

∂n
+

uv2

l2

∂l2

∂n

− v1

l1l2

(
v1

∂l1

∂ξ2

− v2

∂l2

∂ξ1

)
− v1

l2

l1

∂

∂ξ1

(
q2

l2

)
− u

l2

∂Vf

∂ξ2

}
e2

+

{
∂u

∂t
+ (v⊥ + q) · ∇su + (u − Vf )

∂u

∂n
− v2

1

l1

∂l1

∂n
− v2

2

l2

∂l2

∂n
+ v⊥ · ∇sVf

}
n.

(B 16)
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